PROCESSING AND CHARACTERIZATION OF THERMOPLASTIC COMPOSITE THERMAL INTERFACE MATERIALS

introduction

To improve the cooling performance of the electronic systems, thermal interface materials (TIM) that offer a high thermal conductivity between coolers (i.e. heat sinks) and the heat generation source (i.e. CPU) play an important role in increasing performance and lifespan of

Ideal Thermal Interphase Material

(TIM)

Thermally conductive **Flectrically isolative** Low thermal expansion Processability

The objective of the study is:

to develop an elastomeric TIM based on a thermoplastic matrix filled with thermally conductive but electrically insulating hBN particles by applying extrusion and subsequent hot-pressing

- to investigate the effects of blend composition and hBN type and loading

Approach:

- A thermoplastic elastomer matrix filled with thermally conductive fillers

Advantages:

- Thermal conductor
- Electrical insulator
- Low thermal expansion
- -High temperature Stability
- -High compressibility

experimental

- •SEBS: G 1650E, Kraton, USA
- •EVA: Evatane33-45. ARKEMA. USA
- •BN: VSN 1149, VSN 1159 and VSN 1142, ESK, Germany

- -Polymer Matrix: 10,50,70% SEBS-90,50,30% EVA by wt
- -Filler loading level: 30,50% hBN by weight
- -Filler type: VSN 1149, VSN 1159, VSN 1142

results

Thermal Conductivity of Composites

Mechanical Properties of Composites

Material	Dielectric Constant (t.)	
	25 °C	50°C
10SEBS90EVA	5.07	4.23
30SEBS?0EVA	4.37	4.21
50SEBS50EVA	3.84	3.60
70SEBS30EVA	3.59	3.44
50SEBS50EVA-10 VSN1149	3.53	3.57
50SEBS50EVA-30 VSN1149	3.63	3.31
10SEBS90EVA-50 VSN1149	4.35	4.16
30SEBS70EVA-50 VSN1149	4.05	4.07
50SEBS50EVA-50 VSN1149	3.82	3.63
70SEBS30EVA-50 VSN1149	3.46	3.28
50SEBS50EVA-50 VSN1142	4.19	3.94
50SEBS50EVA-50 VSN1159	4.05	3.91

conclusions

- ✓ SEBS/EVA/hBN based thermal interphase materials were successfully prepared
- ✓ the wettability of the matrix and the extent of interaction between matrix and filler have a critical importance in thermal conductivity
- ✓ thermal conductivity and mechanical properties of polymer composites depend on SEBS/EVA ratio and BN loading level
- \checkmark the type of BN has a little effect on the dielectric constant

Sebnem Kemaloglu¹, G. Ozkoc¹, A. Aytac¹ and

M.P. Quaedflieq²

